Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Science ; 384(6694): 428-437, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38662827

RESUMO

A role for vitamin D in immune modulation and in cancer has been suggested. In this work, we report that mice with increased availability of vitamin D display greater immune-dependent resistance to transplantable cancers and augmented responses to checkpoint blockade immunotherapies. Similarly, in humans, vitamin D-induced genes correlate with improved responses to immune checkpoint inhibitor treatment as well as with immunity to cancer and increased overall survival. In mice, resistance is attributable to the activity of vitamin D on intestinal epithelial cells, which alters microbiome composition in favor of Bacteroides fragilis, which positively regulates cancer immunity. Our findings indicate a previously unappreciated connection between vitamin D, microbial commensal communities, and immune responses to cancer. Collectively, they highlight vitamin D levels as a potential determinant of cancer immunity and immunotherapy success.


Assuntos
Bacteroides fragilis , Microbioma Gastrointestinal , Inibidores de Checkpoint Imunológico , Neoplasias , Vitamina D , Animais , Feminino , Humanos , Masculino , Camundongos , Bacteroides fragilis/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/microbiologia , Neoplasias/terapia , Vitamina D/administração & dosagem , Vitamina D/metabolismo , Dieta , Linhagem Celular Tumoral , Calcifediol/administração & dosagem , Calcifediol/metabolismo , Proteína de Ligação a Vitamina D/genética , Proteína de Ligação a Vitamina D/metabolismo
2.
EMBO J ; 43(8): 1545-1569, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485816

RESUMO

Adaptation to chronic hypoxia occurs through changes in protein expression, which are controlled by hypoxia-inducible factor 1α (HIF1α) and are necessary for cancer cell survival. However, the mechanisms that enable cancer cells to adapt in early hypoxia, before the HIF1α-mediated transcription programme is fully established, remain poorly understood. Here we show in human breast cancer cells, that within 3 h of hypoxia exposure, glycolytic flux increases in a HIF1α-independent manner but is limited by NAD+ availability. Glycolytic ATP maintenance and cell survival in early hypoxia rely on reserve lactate dehydrogenase A capacity as well as the activity of glutamate-oxoglutarate transaminase 1 (GOT1), an enzyme that fuels malate dehydrogenase 1 (MDH1)-derived NAD+. In addition, GOT1 maintains low α-ketoglutarate levels, thereby limiting prolyl hydroxylase activity to promote HIF1α stabilisation in early hypoxia and enable robust HIF1α target gene expression in later hypoxia. Our findings reveal that, in normoxia, multiple enzyme systems maintain cells in a primed state ready to support increased glycolysis and HIF1α stabilisation upon oxygen limitation, until other adaptive processes that require more time are fully established.


Assuntos
Hipóxia Celular , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias , Humanos , Sobrevivência Celular , Glicólise/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , NAD
4.
Nat Biotechnol ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191663

RESUMO

The 23 human zinc finger Asp-His-His-Cys motif-containing (ZDHHC) S-acyltransferases catalyze long-chain S-acylation at cysteine residues across an extensive network of hundreds of proteins important for normal physiology or dysregulated in disease. Here we present a technology to directly map the protein substrates of a specific ZDHHC at the whole-proteome level, in intact cells. Structure-guided engineering of paired ZDHHC 'hole' mutants and 'bumped' chemically tagged fatty acid probes enabled probe transfer to specific protein substrates with excellent selectivity over wild-type ZDHHCs. Chemical-genetic systems were exemplified for five human ZDHHCs (3, 7, 11, 15 and 20) and applied to generate de novo ZDHHC substrate profiles, identifying >300 substrates and S-acylation sites for new functionally diverse proteins across multiple cell lines. We expect that this platform will elucidate S-acylation biology for a wide range of models and organisms.

5.
Nat Commun ; 14(1): 7844, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057317

RESUMO

Migration of T cells is essential for their ability to mount immune responses. Chemokine-induced T cell migration requires WNK1, a kinase that regulates ion influx into the cell. However, it is not known why ion entry is necessary for T cell movement. Here we show that signaling from the chemokine receptor CCR7 leads to activation of WNK1 and its downstream pathway at the leading edge of migrating CD4+ T cells, resulting in ion influx and water entry by osmosis. We propose that WNK1-induced water entry is required to swell the membrane at the leading edge, generating space into which actin filaments can polymerize, thereby facilitating forward movement of the cell. Given the broad expression of WNK1 pathway proteins, our study suggests that ion and water influx are likely to be essential for migration in many cell types, including leukocytes and metastatic tumor cells.


Assuntos
Citoesqueleto de Actina , Actinas , Actinas/metabolismo , Polimerização , Movimento Celular/fisiologia , Citoesqueleto de Actina/metabolismo , Transdução de Sinais/fisiologia
6.
Nat Commun ; 14(1): 6809, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884503

RESUMO

Poly(ADP-ribose) polymerase (PARP) inhibitors are used in the clinic to treat BRCA-deficient breast, ovarian and prostate cancers. As their efficacy is potentiated by loss of the nucleotide salvage factor DNPH1 there is considerable interest in the development of highly specific small molecule DNPH1 inhibitors. Here, we present X-ray crystal structures of dimeric DNPH1 bound to its substrate hydroxymethyl deoxyuridine monophosphate (hmdUMP). Direct interaction with the hydroxymethyl group is important for substrate positioning, while conserved residues surrounding the base facilitate target discrimination. Glycosidic bond cleavage is driven by a conserved catalytic triad and proceeds via a two-step mechanism involving formation and subsequent disruption of a covalent glycosyl-enzyme intermediate. Mutation of a previously uncharacterised yet conserved glutamate traps the intermediate in the active site, demonstrating its role in the hydrolytic step. These observations define the enzyme's catalytic site and mechanism of hydrolysis, and provide important insights for inhibitor discovery.


Assuntos
Nucleotídeos , Humanos , Modelos Moleculares , Hidrólise , Domínio Catalítico , Catálise
7.
PLoS Pathog ; 19(6): e1011449, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37352369

RESUMO

Malaria parasite release (egress) from host red blood cells involves parasite-mediated membrane poration and rupture, thought to involve membrane-lytic effector molecules such as perforin-like proteins and/or phospholipases. With the aim of identifying these effectors, we disrupted the expression of two Plasmodium falciparum perforin-like proteins simultaneously and showed that they have no essential roles during blood stage egress. Proteomic profiling of parasite proteins discharged into the parasitophorous vacuole (PV) just prior to egress detected the presence in the PV of a lecithin:cholesterol acyltransferase (LCAT; PF3D7_0629300). Conditional ablation of LCAT resulted in abnormal egress and a reduced replication rate. Lipidomic profiles of LCAT-null parasites showed drastic changes in several phosphatidylserine and acylphosphatidylglycerol species during egress. We thus show that, in addition to its previously demonstrated role in liver stage merozoite egress, LCAT is required to facilitate efficient egress in asexual blood stage malaria parasites.


Assuntos
Malária Falciparum , Malária , Parasitos , Animais , Parasitos/metabolismo , Fosfolipases , Perforina , Proteômica , Eritrócitos/parasitologia , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Malária Falciparum/parasitologia
9.
Dev Cell ; 58(10): 836-846.e6, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37084728

RESUMO

Glioblastoma is thought to originate from neural stem cells (NSCs) of the subventricular zone that acquire genetic alterations. In the adult brain, NSCs are largely quiescent, suggesting that deregulation of quiescence maintenance may be a prerequisite for tumor initiation. Although inactivation of the tumor suppressor p53 is a frequent event in gliomagenesis, whether or how it affects quiescent NSCs (qNSCs) remains unclear. Here, we show that p53 maintains quiescence by inducing fatty-acid oxidation (FAO) and that acute p53 deletion in qNSCs results in their premature activation to a proliferative state. Mechanistically, this occurs through direct transcriptional induction of PPARGC1a, which in turn activates PPARα to upregulate FAO genes. Dietary supplementation with fish oil containing omega-3 fatty acids, natural PPARα ligands, fully restores quiescence of p53-deficient NSCs and delays tumor initiation in a glioblastoma mouse model. Thus, diet can silence glioblastoma driver mutations, with important implications for cancer prevention.


Assuntos
Glioblastoma , Células-Tronco Neurais , Camundongos , Animais , Proteína Supressora de Tumor p53 , PPAR alfa , Dieta , Mutação
10.
Nat Commun ; 13(1): 7338, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443305

RESUMO

Transient lysosomal damage after infection with cytosolic pathogens or silica crystals uptake results in protease leakage. Whether limited leakage of lysosomal contents into the cytosol affects the function of cytoplasmic organelles is unknown. Here, we show that sterile and non-sterile lysosomal damage triggers a cell death independent proteolytic remodelling of the mitochondrial proteome in macrophages. Mitochondrial metabolic reprogramming required leakage of lysosomal cathepsins and was independent of mitophagy, mitoproteases and proteasome degradation. In an in vivo mouse model of endomembrane damage, live lung macrophages that internalised crystals displayed impaired mitochondrial function. Single-cell RNA-sequencing revealed that lysosomal damage skewed metabolic and immune responses in alveolar macrophages subsets with increased lysosomal content. Functionally, drug modulation of macrophage metabolism impacted host responses to Mycobacterium tuberculosis infection in an endomembrane damage dependent way. This work uncovers an inter-organelle communication pathway, providing a general mechanism by which macrophages undergo mitochondrial metabolic reprograming after endomembrane damage.


Assuntos
Mitocôndrias , Proteoma , Animais , Camundongos , Macrófagos , Mitofagia , Peptídeo Hidrolases , Lisossomos
11.
Cell Rep Med ; 3(10): 100781, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36240755

RESUMO

Patients with blood cancer continue to have a greater risk of inadequate immune responses following three COVID-19 vaccine doses and risk of severe COVID-19 disease. In the context of the CAPTURE study (NCT03226886), we report immune responses in 80 patients with blood cancer who received a fourth dose of BNT162b2. We measured neutralizing antibody titers (NAbTs) using a live virus microneutralization assay against wild-type (WT), Delta, and Omicron BA.1 and BA.2 and T cell responses against WT and Omicron BA.1 using an activation-induced marker (AIM) assay. The proportion of patients with detectable NAb titers and T cell responses after the fourth vaccine dose increased compared with that after the third vaccine dose. Patients who received B cell-depleting therapies within the 12 months before vaccination have the greatest risk of not having detectable NAbT. In addition, we report immune responses in 57 patients with breakthrough infections after vaccination.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Neoplasias , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , Estudos Clínicos como Assunto , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Imunidade , SARS-CoV-2
13.
Commun Biol ; 5(1): 877, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028752

RESUMO

α-ketoglutarate (αKG) is a central metabolic node with a broad influence on cellular physiology. The αKG analogue N-oxalylglycine (NOG) and its membrane-permeable pro-drug derivative dimethyl-oxalylglycine (DMOG) have been extensively used as tools to study prolyl hydroxylases (PHDs) and other αKG-dependent processes. In cell culture media, DMOG is rapidly converted to MOG, which enters cells through monocarboxylate transporter MCT2, leading to intracellular NOG concentrations that are sufficiently high to inhibit glutaminolysis enzymes and cause cytotoxicity. Therefore, the degree of (D)MOG instability together with MCT2 expression levels determine the intracellular targets NOG engages with and, ultimately, its effects on cell viability. Here we designed and characterised a series of MOG analogues with the aims of improving compound stability and exploring the functional requirements for interaction with MCT2, a relatively understudied member of the SLC16 family. We report MOG analogues that maintain ability to enter cells via MCT2, and identify compounds that do not inhibit glutaminolysis or cause cytotoxicity but can still inhibit PHDs. We use these analogues to show that, under our experimental conditions, glutaminolysis-induced activation of mTORC1 can be uncoupled from PHD activity. Therefore, these new compounds can help deconvolute cellular effects that result from the polypharmacological action of NOG.


Assuntos
Aminoácidos Dicarboxílicos , Ácidos Cetoglutáricos , Biologia , Alvo Mecanístico do Complexo 1 de Rapamicina
15.
J Clin Invest ; 132(9)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35316216

RESUMO

The synthesis of serine from glucose is a key metabolic pathway supporting cellular proliferation in healthy and malignant cells. Despite this, the role that this aspect of metabolism plays in germinal center biology and pathology is not known. Here, we performed a comprehensive characterization of the role of the serine synthesis pathway in germinal center B cells and lymphomas derived from these cells. We demonstrate that upregulation of a functional serine synthesis pathway is a metabolic hallmark of B cell activation and the germinal center reaction. Inhibition of phosphoglycerate dehydrogenase (PHGDH), the first and rate-limiting enzyme in this pathway, led to defective germinal formation and impaired high-affinity antibody production. In addition, overexpression of enzymes involved in serine synthesis was a characteristic of germinal center B cell-derived lymphomas, with high levels of expression being predictive of reduced overall survival in diffuse large B cell lymphoma. Inhibition of PHGDH induced apoptosis in lymphoma cells, reducing disease progression. These findings establish PHGDH as a critical player in humoral immunity and a clinically relevant target in lymphoma.


Assuntos
Linfoma de Células B , Linfoma , Proliferação de Células , Centro Germinativo , Humanos , Linfoma/genética , Linfoma de Células B/genética , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Serina/metabolismo
17.
Cancer Cell ; 40(2): 114-116, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-34968417
18.
Nat Cancer ; 2: 1321-1337, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34950880

RESUMO

CAPTURE (NCT03226886) is a prospective cohort study of COVID-19 immunity in patients with cancer. Here we evaluated 585 patients following administration of two doses of BNT162b2 or AZD1222 vaccines, administered 12 weeks apart. Seroconversion rates after two doses were 85% and 59% in patients with solid and hematological malignancies, respectively. A lower proportion of patients had detectable neutralizing antibody titers (NAbT) against SARS-CoV-2 variants of concern (VOCs) vs wildtype (WT). Patients with hematological malignancies were more likely to have undetectable NAbT and had lower median NAbT vs solid cancers against both WT and VOCs. In comparison with individuals without cancer, patients with haematological, but not solid, malignancies had reduced NAb responses. Seroconversion showed poor concordance with NAbT against VOCs. Prior SARS-CoV-2 infection boosted NAb response including against VOCs, and anti-CD20 treatment was associated with undetectable NAbT. Vaccine-induced T-cell responses were detected in 80% of patients, and were comparable between vaccines or cancer types. Our results have implications for the management of cancer patients during the ongoing COVID-19 pandemic.


Assuntos
Imunidade Adaptativa/imunologia , Anticorpos Neutralizantes/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Carcinoma de Células Renais/complicações , Neoplasias Renais/complicações , SARS-CoV-2/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Vacina BNT162/administração & dosagem , Vacina BNT162/imunologia , COVID-19/complicações , COVID-19/epidemiologia , Vacinas contra COVID-19/administração & dosagem , ChAdOx1 nCoV-19/administração & dosagem , ChAdOx1 nCoV-19/imunologia , Feminino , Humanos , Imunogenicidade da Vacina/imunologia , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Pandemias/prevenção & controle , Estudos Prospectivos , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Linfócitos T/imunologia , Linfócitos T/virologia , Vacinação/métodos
19.
Nat Metab ; 3(11): 1521-1535, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34799698

RESUMO

Eukaryotic cells can survive the loss of their mitochondrial genome, but consequently suffer from severe growth defects. 'Petite yeasts', characterized by mitochondrial genome loss, are instrumental for studying mitochondrial function and physiology. However, the molecular cause of their reduced growth rate remains an open question. Here we show that petite cells suffer from an insufficient capacity to synthesize glutamate, glutamine, leucine and arginine, negatively impacting their growth. Using a combination of molecular genetics and omics approaches, we demonstrate the evolution of fast growth overcomes these amino acid deficiencies, by alleviating a perturbation in mitochondrial iron metabolism and by restoring a defect in the mitochondrial tricarboxylic acid cycle, caused by aconitase inhibition. Our results hence explain the slow growth of mitochondrial genome-deficient cells with a partial auxotrophy in four amino acids that results from distorted iron metabolism and an inhibited tricarboxylic acid cycle.


Assuntos
Metabolismo Energético , Genoma Mitocondrial , Mitocôndrias/genética , Mitocôndrias/metabolismo , Leveduras/genética , Leveduras/metabolismo , Aminoácidos/metabolismo , Biomassa , Proliferação de Células , Ciclo do Ácido Cítrico , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Potencial da Membrana Mitocondrial , Mutação , Fenótipo , Relação Estrutura-Atividade
20.
J Biol Chem ; 297(5): 101294, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34634303

RESUMO

Tandem mass spectrometry (MS/MS) is an accurate tool to assess modified ribonucleosides and their dynamics in mammalian cells. However, MS/MS quantification of lowly abundant modifications in non-ribosomal RNAs is unreliable, and the dynamic features of various modifications are poorly understood. Here, we developed a 13C labeling approach, called 13C-dynamods, to quantify the turnover of base modifications in newly transcribed RNA. This turnover-based approach helped to resolve mRNA from ncRNA modifications in purified RNA or free ribonucleoside samples and showed the distinct kinetics of the N6-methyladenosine (m6A) versus 7-methylguanosine (m7G) modification in polyA+-purified RNA. We uncovered that N6,N6-dimethyladenosine (m62A) exhibits distinct turnover in small RNAs and free ribonucleosides when compared to known m62A-modified large rRNAs. Finally, combined measurements of turnover and abundance of these modifications informed on the transcriptional versus posttranscriptional sensitivity of modified ncRNAs and mRNAs, respectively, to stress conditions. Thus, 13C-dynamods enables studies of the origin of modified RNAs at steady-state and subsequent dynamics under nonstationary conditions. These results open new directions to probe the presence and biological regulation of modifications in particular RNAs.


Assuntos
Adenosina , Isótopos de Carbono , Guanosina/análogos & derivados , Processamento Pós-Transcricional do RNA , RNA , Adenosina/química , Adenosina/metabolismo , Adenosina/farmacologia , Isótopos de Carbono/química , Isótopos de Carbono/farmacologia , Guanosina/química , Guanosina/metabolismo , Guanosina/farmacologia , Marcação por Isótopo , RNA/química , RNA/metabolismo , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA